Self assembly of human septin 2 into amyloid filaments.

نویسندگان

  • Julio Cesar Pissuti Damalio
  • Wanius Garcia
  • Joci Neuby Alves Macêdo
  • Ivo de Almeida Marques
  • José M Andreu
  • Rafael Giraldo
  • Richard Charles Garratt
  • Ana Paula Ulian Araújo
چکیده

Septins are a conserved group of GTP-binding proteins that form hetero-oligomeric complexes which assemble into filaments. These are essential for septin function, including their role in cytokinesis, cell division, exocytosis and membrane trafficking. Septin 2 (SEPT2) is a member of the septin family and has been associated with neurofibrillary tangles and other pathological features of senile plaques in Alzheimer's disease. An in silico analysis of the amino acid sequence of SEPT2 identified regions with a significant tendency to aggregate and/or form amyloid. These were all observed within the GTP-binding domain. This was consistent with the experimental identification of a structure rich in β-sheet during temperature induced unfolding transitions observed for both the full length protein and the GTP-binding domain alone. This intermediate state is characterized by irreversible aggregation and has the ability to bind Thioflavin-T, suggesting its amyloid nature. Under electron microscopy, fibers extending for several micrometers in length could be visualized. The results shown in this study support the hypothesis that single septins, when present in excess or with unbalanced stoichiometries, may be unstable and assemble into amyloid-like structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast

Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is e...

متن کامل

Amyloid Oligomers and Protofibrils, but Not Filaments, Self-Replicate from Native Lysozyme

Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filament...

متن کامل

SEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility

Septins are critical for numerous cellular processes through the formation of heteromeric filaments and rings indicating the importance of structural regulators in septin assembly. Several posttranslational modifications (PTMs) mediate the dynamics of septin filaments in yeast. However, little is known about the role of PTMs in regulating mammalian septin assembly, and the in vivo significance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimie

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 2012